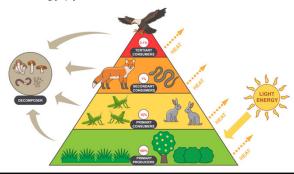

Food Webs and Energy Pyramids

- •All living things need energy.
- •Plants get their energy from the sun.
- •Energy made by plants (through photosynthesis) is transferred to an animal that eats it.

- •The organism then transfers the energy to the next organism which eats it, and so on, and so on.
- •A food chain shows a **single** pathway for the passing of energy.
 - Arrows represent the direction that energy is transferred.


- •Organisms in an ecosystem eat more than one thing.
- •A more realistic representation of energy transfer is a food web.
- •A food web shows **multiple** food chains.

•Arrows represent the direction that energy is transferred.

 Another way of representing the energy transfer in an ecosystem is called an energy pyramid.

Trophic Level

- •A **trophic level** is the feeding position in a food chain or energy pyramid that an organism occupies based on what it eats.
- •Energy decreases from lower to higher trophic levels.
- •Biomass (living or organic matter) decreases from lower to higher trophic levels.

•	
•	
•	
•	
•	
•	
•	

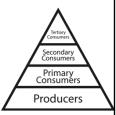
Producers

- Producers get their energy from the Sun.
- •They make their own energy through the process of photosynthesis.
- Producers are also called autotrophs, which are organisms that make their own energy.

Consumers

- •Consumers are organisms that are unable to make their own energy.
- •They must consume other organisms to get the energy they need to survive.
- Consumers are also called heterotrophs.

Decomposers


- **Decomposers** are the natural recycler of organic matter in ecosystems.
- •They are active at each level of the energy pyramid.
- Decomposers break down dead organisms and return their nutrients back to the environment.

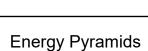
Primary Consumers

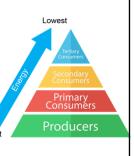
- •Primary consumers are first level consumers that eat producers.
- They are herbivores (eat only plants) that cannot make their own energy.
- •They consume other organisms, which make them **heterotrophs**.

Secondary and Tertiary Consumers

- •Secondary and tertiary consumers eat primary consumers and each other.
- They are either carnivores (eat other animals) or omnivores (eat both plants and animals).
- •Both secondary and tertiary consumers are **heterotrophs**.

Apex Predators

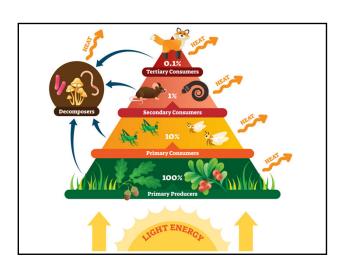

- Apex predators are at the top of the food chain (an animal upon which nothing preys).
- •They are typically carnivores.
- Apex predators are heterotrophs.


Scavengers

•Scavengers consume dead organisms that have died from causes other than predation or have been killed by other predators.


•They are active at each level of the energy pyramid.

•An energy pyramid's shape shows how the amount of useful energy that enters each level (chemical energy in the form of food) **decreases** as it is used by the organisms in that level.



- •The amount of energy in every level decreases by about 90% as you go up the pyramid.
- •Approximately 10% of the energy is passed onto the next trophic level.

- •Energy is used up by the plant or animal's metabolic processes, including growing, reproducing, running, eating, finding mates, escaping danger, and all daily activities.
- •Energy is also given off to the environment in the form of heat.

- •The consumers at the top of a food chain have much less energy available to support them than those closer to the bottom.
- •That is why their numbers are relatively few. Eventually, the amount of useful energy left cannot support another level.

Biodiversity

- •Scientists generally accept that the term biodiversity describes the number and kinds of species and their abundance in a given location or on the planet.
- •Simplistically, the more biodiversity in an ecosystem, the better its chances to survive changes.

Biogeochemical Cycles

- •A biogeochemical cycle is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust.
- Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle.

- •In each cycle, the chemical element or molecule is transformed and cycled by living organisms and through various geological forms and reservoirs, including the atmosphere, the soil and the oceans.
- •It can be thought of as the pathway by which a chemical substance cycles the biotic (living) compartment and the abiotic (non-living) compartments of Earth.

 <u> </u>	

Carbon Cycle

•The carbon cycle is a system that transfers carbon from one part of the environment (reservoir) to another.

Photosynthesis

- Photosynthesis occurs in autotrophs (plants).
- •This process converts carbon dioxide and water into oxygen and glucose (carbohydrates)

•6 CO_2 +6 H_2O + energy $\rightarrow 6O_2$ + $C_6H_{12}O_6$

Cellular Respiration

- •Cellular respiration occurs in all living cells.
- This process converts oxygen and glucose (carbohydrates) into carbon dioxide and water.
 - $\bullet 6O_2 + C_6H_{12}O_6 \rightarrow 6CO_2 + 6H_2O + energy$

Consumption

•Consumers get the glucose necessary for cellular respiration by ingesting plants and/or animals.

Decomposition

- •Carbon enters the soil as dead plant matter.
 - •It is broken down by microorganisms during decay.
 - •The decay process also releases carbon to the atmosphere through respiration.

•Over long periods of time buried organic matter forms deposits of coal, natural gas and oil (fossil fuels).

Combustion

•The burning of organic material releases carbon dioxide into the atmosphere.

Diffusion

•Carbon dioxide is absorbed and released where the ocean's surface meets the air.

Weathering and Dissolving

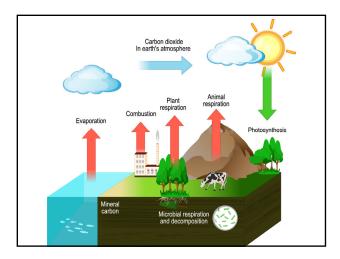
- •Carbonic acid forms when water (rain) reacts with the carbon dioxide in the atmosphere.
- •The weakly acidic rain reacts with minerals on the earth's surface dissolving them.

Precipitation of Minerals

- •Dissolved minerals are carried by rivers and streams to the ocean where they precipitate out.
- •Marine animal shells settle to the ocean floor when the animal dies and eventually form limestone.

Burial and Subduction

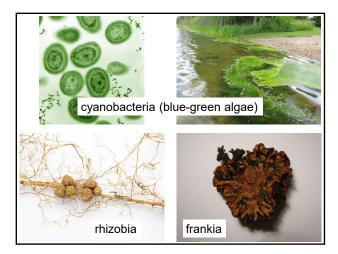
- Carbon bearing sediment is continually being deposited on the sea floor forming new rock.
- •Seafloor spreading pushes the seafloor under the continental margins in the process called subduction.



Volcanic Eruptions

 Volcanoes, hot springs, and tectonic uplift all release carbon dioxide back into the atmosphere.

•		
•		
•		
•		
•		
•		
•		
•		

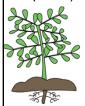


Nitrogen Cycle

•The nitrogen cycle is the process by which nitrogen is converted into various chemical forms as it circulates through the atmosphere, soil, and living organisms.


Nitrogen Fixation

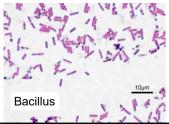
- •The atmosphere contains about 78% nitrogen but neither plant nor animal can use this nitrogen directly.
- •Nitrogen fixation is a process that takes nitrogen from the atmosphere and converts it into ammonia.
 - •This process is performed by various types of bacteria.

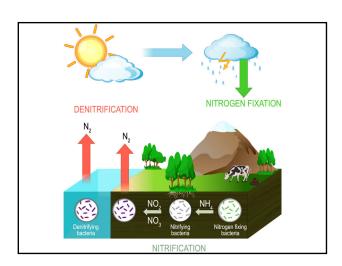

Nitrification

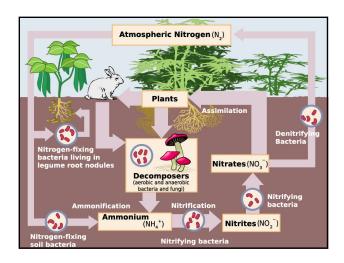
- •Not all plants can use ammonia.
- •The nitrification process converts ammonia into nitrates and nitrites that the other plants can use.
 - •This process is performed by various types of bacteria.

Assimilation

- •Plants absorb the ammonia, nitrates, or nitrates through their roots.
- •Animals absorb the nitrogen that they need by eating plants (or animals that eat plants).

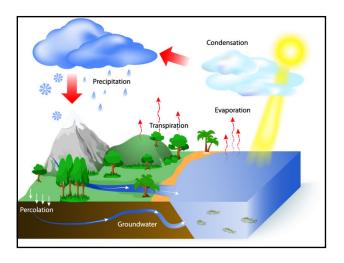

Ammonification


•Decomposers break down the molecules in excretions and dead organisms into ammonia which is stored in the soil.



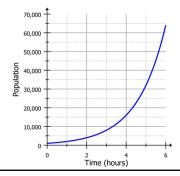
Denitrification

- •Denitrification converts nitrates in the soil to nitrogen gas.
 - •This process is performed by various types of bacteria.



Water Cycle

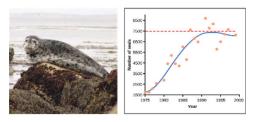
- •The water cycle describes the continuous movement of water on, above, and below the Earth's surface.
- It involves processes such as evaporation, condensation, precipitation, and runoff, allowing water to change between liquid, solid, and gas forms.



Population Growth

•Thomas Malthus (English) published a book in 1798 stating that populations with unlimited natural resources grow very rapidly, which represents an **exponential growth**, and then population growth decreases as resources become depleted, indicating a **logistic growth**.

•The best example of exponential growth is seen in bacteria grown in the lab with unlimited resources.


- •Exponential growth is possible only when infinite natural resources are available; this is not the case in the real world.
- •In the real world, exponential growth cannot continue indefinitely.
- Exponential growth may occur when there are few individuals and plenty of resources, but when the number of individuals gets large enough, resources will be depleted, slowing the growth rate.
- Eventually, the growth rate will plateau or level off.

*This population size, which represents the maximum population size that a particular environment can support, is called the carrying capacity.

Carrying capacity

Understanding Time

•In the real world populations fluctuate due to many factors, including adaptation to the environment, weather conditions, and competition between organisms.

- •The factors that control (or limit) a population are called limiting factors.
 - •Some examples:
 - Resource availability
 - Food, water, shelter
 - Disease
 - Competition
 - Natural disasters
 - · Flood, drought, fire
 - Weather